非線形最小二乗法

1 問題

(1) 式の最小値を与える (x,y) を求める。 f(x,y) は,図 1 に示すように,(x,y)=(2,3) で最小値をとり,下に凸の曲面である。

$$f(x,y) = \exp\left\{(x-2)^2 + (y-3)^2\right\} \tag{1}$$

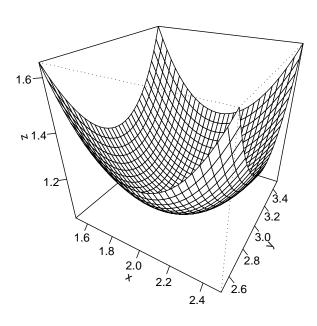


図1 3次元見取り図

2 導関数の定義

2.1 一次導関数

(1) 式をx, y で偏微分して (2) 式, (3) 式を求める。 なお、以下では $E=(x-2)^2+(y-3)^2$ と略す。

$$g(x,y) = \frac{\partial f(x,y)}{\partial x} = 2(x-2)exp(E)$$
 (2)

$$h(x,y) = \frac{\partial f(x,y)}{\partial y} = 2(y-3)exp(E)$$
(3)

2.2 ヤコビ行列

(2) 式, (3) 式をさらにそれぞれx, yで偏微分することにより、ヤコビ行列Jが求まる。

$$J = \begin{bmatrix} J_{11}(x,y) & J_{12}(x,y) \\ J_{21}(x,y) & J_{22}(x,y) \end{bmatrix}$$
 (4)

$$= \begin{bmatrix} \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \\ \frac{\partial h(x,y)}{\partial x} & \frac{\partial h(x,y)}{\partial y} \end{bmatrix}$$
 (5)

$$= \begin{bmatrix} \frac{\partial^2 f(x,y)}{\partial x \partial x} & \frac{\partial^2 f(x,y)}{\partial x \partial y} \\ \frac{\partial^2 f(x,y)}{\partial y \partial x} & \frac{\partial^2 f(x,y)}{\partial y \partial y} \end{bmatrix}$$

$$= \begin{bmatrix} 2(2x^2 - 8x + 9)exp(E) & 4(x - 2)(y - 3)exp(E) \\ 4(x - 2)(y - 3)exp(E) & 2(2y^2 - 12y + 19)exp(E) \end{bmatrix}$$
(6)

$$= \begin{bmatrix} 2(2x^2 - 8x + 9)exp(E) & 4(x - 2)(y - 3)exp(E) \\ 4(x - 2)(y - 3)exp(E) & 2(2y^2 - 12y + 19)exp(E) \end{bmatrix}$$
(7)

なお,

$$J_{12}(x,y) = J_{21}(x,y) \tag{8}$$

のように、ヤコビ行列は対称である。

ニュートン・ラフソン法による近似値の改善

初期値 (x_i, y_i) , i = 0 から始めてニュートン・ラフソン法により改善していくには、(9) 式の連立方程式を 解いて Δ_x , Δ_y を求める。

$$\begin{cases}
J_{11}(x_i, y_i) \Delta_x + J_{12}(x_i, y_i) \Delta_y = -g(x_i, y_i) \\
J_{21}(x_i, y_i) \Delta_x + J_{22}(x_i, y_i) \Delta_y = -h(x_i, y_i)
\end{cases}$$
(9)

解の改善値 (x_{i+1}, y_{i+1}) は、(10) 式のように求めることができる。

$$\begin{cases} x_{i+1} = x_i + \Delta_x \\ y_{i+1} = y_i + \Delta_y \end{cases}$$
 (10)

(9) 式, (10) 式による手順を繰り返し, Δ_x , Δ_y が十分小さくなったときの x_{i+1} , y_{i+1} が求める解である。

4 例解

- 1. 初期値を $(x_0, y_0) = (1,1)$ とする
- 2. g(1,1) = -296.8263182, h(1,1) = -593.6526364
- 3. $J_{11}(1,1) = 890.4789546$

$$J_{12}(1,1) = J_{21}(1,1) = 1187.3052728$$

$$J_{22}(1,1) = 2671.4368638$$

4. 方程式

$$\begin{cases} 890.4789546 \, \Delta_x + 1187.3052728 \, \Delta_y = 296.8263182 \\ 1187.3052728 \, \Delta_x + 2671.4368638 \, \Delta_y = 593.6526364 \\ \text{を解く} \, . \end{cases}$$

- 5. $\Delta_x = 0.0909091$, $\Delta_y = 0.1962533$
- 6. $x_1 = 1.0909091$, $y_1 = 1.1818182$
- 7. Δ_x , Δ_y が十分小さくなるまで、2~6 を繰り返す

収束 (x = 2, y = 3) までの計算過程は表 1 のようになる。

表 1 計算過程

繰り返し	x, y^{\dagger}	J^{\ddagger}		$g(),h()^{\star}$	$-g(),-h()^*$	$\Delta_x, \Delta_y^{\oplus}$	exp(E)
1	1.0000	890.4790	1187.3053	-296.8263	296.8263	0.0909	148.4132
	1.0000	1187.3053	2671.4369	-593.6526	593.6526	0.1818	
2	1.0909	330.6397	412.0120	-113.3033	113.3033	0.0981	62.3168
	1.1818	412.0120	948.6577	-226.6066	226.6066	0.1963	
3	1.1890	124.0907	140.9907	-43.4639	43.4639	0.1070	26.7977
	1.3781	140.9907	335.5767	-86.9278	86.9278	0.2141	
4	1.2961	47.4361	47.2224	-16.7710	16.7710	0.1182	11.9124
	1.5921	47.2224	118.2697	-33.5420	33.5420	0.2364	
5	1.4143	18.7456	15.2563	-6.5117	6.5117	0.1322	5.5587
	1.8286	15.2563	41.6301	-13.0235	13.0235	0.2644	
6	1.5465	7.8944	4.6020	-2.5368	2.5368	0.1484	2.7967
	2.0929	4.6020	14.7974	-5.0735	5.0735	0.2967	
7	1.6948	3.7794	1.1868	-0.9723	0.9723	0.1580	1.5930
	2.3897	1.1868	5.5597	-1.9445	1.9445	0.3160	
8	1.8528	2.3252	0.1930	-0.3280	0.3280	0.1210	1.1143
	2.7057	0.1930	2.6148	-0.6559	0.6559	0.2419	
9	1.9738	2.0096	0.0055	-0.0526	0.0526	0.0260	1.0034
	2.9476	0.0055	2.0179	-0.1051	0.1051	0.0520	
10	1.9998	2.0000	0.0000	-0.0004	0.0004	0.0002	1.0000
	2.9996	0.0000	2.0000	-0.0007	0.0007	0.0004	
11	2.0000	2.0000	0.0000	0.0000	0.0000	0.0000	1.0000
	3.0000	0.0000	2.0000	0.0000	0.0000	0.0000	
12	2.0000	2.0000	0.0000	0.0000	0.0000	0.0000	1.0000
	3.0000	0.0000	2.0000	0.0000	0.0000	0.0000	

^{†:} 上段が x, 下段が y

^{‡: 4} つの数値はそれぞれのヤコビ行列の要素(関数)の値

 $[\]star$: 上段が g(x,y) の値,下段が h(x,y) の値

^{*:} 左の欄の数値の符号を反転したもの

 $[\]oplus$: 上段が Δ_x の値,下段が Δ_y の値